ROCm(Radeon Open Compute)是由AMD推出的面向深度学习和高性能计算的开源平台。它提供了用于GPU计算的工具集,包括ROCm深度学习框架、数学库和调试工具。
```c
include
include
define N 1024
__global__ void matrixMul(float *C, float *A, float *B) {
int tid = blockIdx.x * blockDim.x threadIdx.x;
if (tid < N * N) {
int row = tid / N;
int col = tid % N;
float val = 0;
for (int k = 0; k < N; k ) {
val = A[row * N k] * B[k * N col];
}
C[row * N col] = val;
}
}
int main() {
float *A, *B, *C;
hipMallocManaged(&A, N * N * sizeof(float));
hipMallocManaged(&B, N * N * sizeof(float));
hipMallocManaged(&C, N * N * sizeof(float));
// 初始化A和B矩阵
// ...
dim3 blockDim(256, 1, 1);
dim3 gridDim((N * N blockDim.x 1) / blockDim.x, 1, 1);
matrixMul<<
hipDeviceSynchronize();
// 处理结果矩阵C
// ...
hipFree(A);
hipFree(B);
hipFree(C);
return 0;
}
```
```c
include
include
include "MIOpenHeaders.h"
int main() {
miopenHandle_t handle;
miopenCreate(&handle);
miopenConvolutionDescriptor_t conv_desc;
miopenCreateConvolutionDescriptor(&conv_desc);
// 设置卷积描述符参数
// ...
miopenTensorDescriptor_t input_desc, output_desc, weight_desc, bias_desc;
miopenCreateTensorDescriptor(&input_desc);
miopenCreateTensorDescriptor(&output_desc);
miopenCreateTensorDescriptor(&weight_desc);
miopenCreateTensorDescriptor(&bias_desc);
// 设置张量描述符参数
// ...
miopenConvFwdAlgorithm_t algo;
miopenFindConvolutionForwardAlgorithm(handle, input_desc, /*...*/, output_desc, /*...*/, conv_desc, output_desc, /*...*/, &algo, 1, &returned_algo_count);
// 查找最优的前向卷积算法
// ...
// 为输入、输出、权重、偏置张量分配内存并初始化
// ...
miopenConvolutionForward(handle, &alpha, input_desc, input_data, weight_desc, weight_data, conv_desc, algo, &beta, output_desc, output_data);
// 执行前向卷积操作
// ...
miopenDestroy(handle);
return 0;
}
```
以上示例演示了如何使用ROCm进行矩阵乘法运算和神经网络训练。在实际编程过程中,您可以根据具体的任务需求和硬件环境选择合适的ROCm工具和函数进行编程。详细了解ROCm文档和示例代码也是非常重要的,以便更好地利用ROCm平台的强大功能。
文章已关闭评论!
2024-11-26 11:51:00
2024-11-26 11:49:35
2024-11-26 11:47:47
2024-11-26 11:46:39
2024-11-26 11:45:26
2024-11-26 11:44:17
2024-11-26 11:42:53
2024-11-26 11:41:39